Electron Cloud Instabilities

Robert Zwaska Fermilab

Dec. 5, 2006

Outline

- Electron Cloud Intro
- Formation Process
- Interaction with beam
- Observations at Fermilab

Electron Cloud Basics

- Positively-charged beam
- Produces an electric field
- Supports a persistent plasma of nonrelativistic electrons within the vacuum of the beampipe

Other notes:

- Beam and electrons interact
- Electrons must be produced somehow
 - Seconday/photo emission
 - > Primary Production

Why Fermilab Needs to Understand the Cloud

- Fermilab has high-intensity, positive beams
 - ➤ However: the cloud does not limit operation of our accelerators ... yet
 - ➤ When considering upgrades (intensity increases), we might produce an intense cloud and have to deal with it
 - Proton Plan/Driver SNuMI
- Fermilab is part of other projects that could likely be limited by the cloud
 - > LHC will produce a cloud
 - > ILC positron damping ring will produce a cloud
- Almost any higher intensity, positive beam will have to be designed with the electron cloud in mind
 - ➤ Performance limitations may be by crippling, or mitigation expensive after the fact

Electron Cloud Research

- Study of the cloud split among 3 major topics:
 - 1. How does the cloud form?
 - 2. How does the cloud interact with the beam?
 - 3. How can the cloud be prevented or mitigated?

Whole variety of physical processes and parameters involved

First question: what has been seen so far?

e-cloud beam instabilities at various machines

INP Novosibirsk, 1965

Argonne ZGS,1965

BNL AGS, 1965

Bevatron, 1971

ISR, ~1972

PSR, 1988

AGS Booster, 1998/99

KEKB, 2000

CERN SPS, 2000

[F.Z. PRST-AB **7**, 124801 (2004)

"critical mass phenomenon"?

hadron machine	$ZN_b/(\sigma_x\sigma_y\sigma_z)$ [108/mm ³]
ISR	0.14
CPS	0.28
SPS (LHC)	0.21
SPS (FT)	0.13 e- cloud effects
PSR	0.15
RHIC	0.10
ISIS	0.006 no e- cloud
SNS	0.30
J-PARC (3 GeV)	0.04 safe?
FNAL 8-GeV PD	0.03 safe?
J-PARC (50 GeV)	0.17
FAIR SIS-18/100	0.23/0.31
LHC	159

Weiren Chou, Oliver Bruning, Massimo Giovannozzi, Elias Metral, ECLOUD'02

> planned, or under construction or commissioning

Different Models of Cloud Formation

Resonant Production

- Similar to multipactoring in RF cavities
 - Multiple bunches accelerate electrons at a specific resonance, producing more through secondary emission
- ➤ Assumes an unrealistic number of symmetries

Photoproduction

- ➤ Huge number of synchrotron photons produce electrons through photo-emission
 - Doesn't require much secondary emission or a cascade
- Not relevant to proton machines and can be dealt with vacuum antechambers

• Quasi-adiabatic heating

- ➤ Long bunches slowly attract and heat electrons into the center of the beam vessel
- Expelled at the end of the bunch and produce electrons through secondary emission

• Fast heating – (most relevant to Fermilab)

- ➤ Short bunches shock electrons into the center heating them
- Collisions with beam pipe produce a sea of secondary electrons that mill around the walls
- ➤ Subsequent bunches heat the electrons multiple times, producing a cascade
- > Repulsion within a strong cloud can further contribute to heating

electron cloud in the LHC

[Courtesy F. Ruggiero]

schematic of e- cloud build up in the arc beam pipe, due to photoemission and secondary emission

empirical e-cloud threshold scaling: $N_b \sim L_{sep}$

[F.Z., EPAC'02]

Model at Fermilab

- Considering the MI beam
 - ➤ 1-8 ns long bunches every 19 ns
 - > 1-5 mm transverse sigma
 - ➤ Bunch intensities of 10¹¹ protons
- Produce a few initial/primary electrons
 - > Residual gas ionization
 - *O*(e⁻ / m / torr / proton)
 - ➤ Lost protons
 - Can produce 100's in beam pipe
- Beam produces strong potential
 - ➤ Nonadiabatic appearance
 - > Electrons Accelerate
- Beam disappears
 - > Electrons collide with wall

Secondary Emission

- More electrons produced upon collision with wall
 - Conversion of energy to multiplicity
- On average, 2 electrons produced per incident 400 eV electron on MI pipe
- Secondary electron yield (SEY) depends on incident electron's energy
- Different materials and geometries can have different SEYs
- Produced electrons have much lower energies, typically 1-10 eV

Secondary Electrons Reheated

- Secondaries are reheated in the same way as the primaries
 - ➤ Bunches must reappear before secondaries are reabsorbed
 - > Potential for exponential growth
- Collective electron charge can increase heating effect
- Eventually, electrons will screen the proton's charge leading to a saturation density
 - Peak electron linear density comparable to peak proton density

Processes Involved

Possible Effects of the Cloud

- Vacuum bursts caused by gas desorption
 - > Can activate machine protection
 - ➤ Hurt lifetime of storage ring
- New impedance electrons act as a wake field
- Tune Shifts
 - > Normal space charge tune shift can be considered to be the sum of electric and magnetic parts in the lab frame
 - Magnetic partially cancels the electric
 - Electron cloud can neutralize electric, but leave the $F_{\rm r} = \frac{eI}{2\pi\varepsilon_0\beta c}(1-\beta^2)\frac{r}{a^2}$
 - Tune shift can be potentially large
 - Like a beam-beam effect around the entire ring
 - > Potential is also very nonlinear -> emittance growth
 - Also time-varying in bunch and in bunch train

CERN

Pinch Model from CERN

Electron cloud evolution

e- motion during the passage of a Gaussian bunch:

$$-x < \sigma_x$$
 harmonic oscillations (~4)

$$\omega_{\rm e} = \sqrt{\lambda_{\rm b}(z) r_{\rm e} c^2 / \sigma_{\rm r}^2} \approx 2\pi \cdot 1.2 \, GHz$$

-
$$x >> \sigma_x$$
 non-linear oscillations
($x > 12\sigma_x$, e- perform less then ½ oscillat.)

→ EC density function of longitudinal position

two mechanisms of incoherent e- effect & shrinkage:

- ✓ periodic resonance crossing → halo growth
- ✓ periodic linear-instability crossing → core growth

ingredients: (1) synchrotron motion, (2) e- induced tune shift along the bunch (E. Benedetto, G. Franchetti, F. Zimmermann, submitted to PRL)

Electron Cloud at MI

- Currently run with 53 MHz bunches of 6-10 x 10¹⁰ protons / bunch
 - \triangleright Question for upgrades: Can the bunch population be brought to 30 x 10¹⁰?
 - ➤ At a review this question was asked for the electron cloud
- Weiren Chou convinced Miguel Furman (LBNL) to simulate electron cloud build-up with POSINST
 - Results prompt further investigation at Fermilab
- Note: the Main Injector does not suffer from the e-p instability
 - ➤ However, we can see some evidence of cloud formation
- Intend to study with observations and LBNL simulations

Considering the Cloud

- Simulations suggest that MI might be near a threshold
 - ➤ 4-5 orders or magnitude increase of cloud density with a doubling of bunch intensity
- Not yet established:
 - ➤ How well code pertains to Main Injector (question of SEY)
 - ➤ What the effects of electron neutralization will be on the beam

Measurements of Dynamic Pressure Rise

Dynamic Rises Around the Ring

Electron Probe

- "Retarding Field Analyzer"
 - ➤ Borrowed from Argonne
- Two electrodes connected externally
 - ➤ Retarder can be biased to allow energy measurements
- Currently being used as a simple electron counter
 - ➤ Directly measure electron current on the beam pipe

Collected results

• Clear turn-on at higher

• Noise is worse due to

• $0.1 \text{ uA} \sim 1\%$

SS+NuMI Histogrammed

Time Measurements

- Unbiased signal
 - > Required lots of noise reduction
 - > Could not get a good zero for subtraction
 - Dip at 1.1 s
- Rapid increase of signal occurs into acceleration
 - ➤ Dip at transition (next slide)

Transition Effect

- Definite decrease in cloud signal at transition
 - ➤ Not expected
 - Simulations have suggested that cloud current only increases with smaller bunch length
- Looking into with simulation

More Transition

- Better filtering/amplifying allow a closer look
 - > Introduces time delay
- Some cloud before transition
- Biggest effect after
- Bunch length dependence looks complicated

New Simulations

- LBNL now thinks that very short bunches can suppress ecloud in simulation, two causes:
 - Electrons have too high or an energy
 - Too much time between bunches
- However, parameter space is different for MI, so we still don't have a clear correspondence

Simulation Issues

- Secondary emission is a complicated process
 - Measurements suggest ours maxes at 1.9-2.0
 - ➤ However, simulation saturates well before that level
- Issue with SEY models
 - Multidimensional phase space
 - > Electric field at surface

Summary

- The electron cloud is a potentially limiting collective effect in positive particle accelerators
- Fermilab accelerators are not limited by the cloud, but
 - > We do observe some cloud activity
 - > Simulations suggest that we may be near a threshold
 - Upgrades may double/triple bunch intensities
- Electron cloud under study with observations and simulation
 - > Progress has been ongoing, still looking for a clear picture
 - Cloud has been observed in isolated locations
 - > Decrease of cloud intensity has been observed at very short bunch lengths
 - May or may not be consistent with simulation
- Consideration of the cloud will be important for any path the Fermilab starts on